Sampling of pairs in pairwise likelihood estimation for latent variable models with categorical observed variables

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Composite Likelihood Estimation for Latent Variable Models with Ordinal and Continuous, or Ranking Variables

Katsikatsou, M. 2013. Composite Likelihood Estimation for Latent Variable Models with Ordinal and Continuous, or Ranking Variables. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Social Sciences 86. 31 pp. Uppsala. ISBN 978-91-554-8571-9. The estimation of latent variable models with ordinal and continuous, or ranking variables is th...

متن کامل

Particle methods for maximum likelihood estimation in latent variable models

Standard methods for maximum likelihood parameter estimation in latent variable models rely on the Expectation-Maximization algorithm and its Monte Carlo variants. Our approach is different and motivated by similar considerations to simulated annealing; that is we build a sequence of artificial distributions whose support concentrates itself on the set of maximum likelihood estimates. We sample...

متن کامل

Pairwise likelihood estimation for factor analysis models with ordinal data

Pairwise maximum likelihood (PML) estimation method is developed for factor analysis models with ordinal data and tted both in an exploratory and con rmatory set-up. The performance of the method is studied via simulations and comparisons with full information maximum likelihood (FIML) and three-stage limited information estimation methods, namely the robust unweighted least squares (3S-RULS) a...

متن کامل

Modeling Interactions Between Latent and Observed Continuous Variables Using Maximum-Likelihood Estimation In Mplus

Modeling with random slopes is used in random coefficient regression, multilevel regression, and growth modeling. Random slopes can be seen as continuous latent variables. Recently, a flexible modeling framework has been implemented in the Mplus program to do modeling with such latent variables combined with modeling of psychometric constructs, typically referred to as factors, measured by mult...

متن کامل

Gibbs sampling for parsimonious Markov models with latent variables

Parsimonious Markov models have been recently developed as a generalization of variable order Markov models. Many practical applications involve a setting with latent variables, with a common example being mixture models. Here, we propose a Bayesian model averaging approach for learning mixtures of parsimonious Markov models that is based on Gibbs sampling. The challenging problem is sampling o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics and Computing

سال: 2018

ISSN: 0960-3174,1573-1375

DOI: 10.1007/s11222-018-9812-8